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Abstract 

An experimental Warn-on-Forecast (WoF) ensemble data assimilation (DA) and prediction 

system at 1-km grid spacing is developed and tested using two landfalling tropical cyclone (TC) 

events, one springtime severe thunderstorm event, and one summertime flash flood event. To 

evaluate the impact of DA at 1-km grid spacing, two experiments are conducted. One experiment, 

namely the WoFS-1km, generates 3-h ensemble forecasts from the 1-km WoFS analyses while 

another experiment, namely the Downscaled-1km, generates 3-h ensemble forecasts from 

downscaled 3-km analyses. With 1-km DA, the two landfalling TC events and the summertime 

event show some improvement in predicting high reflectivity, while the springtime event performs 

worse. Meanwhile, WoFS-1km is slightly better at predicting heavier precipitation (>20 mm h-1) 

with lower bias. However, heavy precipitation spatial placement error is only mitigated in one TC 

event and the summertime event with 1-km DA but is neutral or worse in the other two events. 

Object-based verification for rotation objects indicates that WoFS-1km performs better in one of 

the TC events, but worse in the springtime event with lower probability of detection and higher 

false alarm ratio due to fewer strong rotation objects being generated. The forecast skill of WoFS-

1km for the springtime event is degraded mainly because the convective cores do not sufficiently 

develop as the forecast advances. The conditional benefits from 1-km DA in this study highlights 

the need for evaluation of a larger sample of convective storm cases and further development of 

the system. 
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1. Introduction 

The National Severe Storms Laboratory’s (NSSL) experimental Warn-on-Forecast System 

(WoFS) is a storm-scale frequent update-cycle ensemble data assimilation (DA) and prediction 

system designed to provide continuous 0–6-h probabilistic guidance of severe storm hazards (e.g., 

tornadoes, flash flooding, large hail, severe winds, and lightning rate). The baseline WoFS is 

developed using a 3-km horizontal grid spacing (WoFS-3km) and has demonstrated the capability 

to provide skillful short-term probabilistic forecasts of thunderstorm hazards (Wheatley et al. 2015; 

Yussouf et al. 2013, 2015; Jones et al. 2016, 2018; Skinner et al. 2018) and heavy rainfall events 

(Lawson et al. 2018; Yussouf et al. 2016, 2020; Yussouf and Knopfmeier 2019; Jones et al. 2019). 

Since 2017, the WoFS-3km has been running as an on-demand system during spring and summer 

experiments for testing and evaluation by the operational forecasters at NOAA national centers 

and several local offices. The system is showing promise in influencing the lead-time, specificity, 

and uncertainty information of storm hazards at the “Watch-to-Warning” scale (Wilson et al. 

2019a, b). 

Presently, operational storm-scale numerical weather prediction (NWP) models in the 

United States typically run with a 3-km horizontal grid spacing (∆x hereafter), such as the High-

Resolution Rapid Refresh (HRRR) model (Benjamin et al. 2016) or the High-Resolution Ensemble 

Forecast (HREF) system (Roberts et al. 2019). However, convection-allowing models (CAMs) 

with 3–4-km ∆x have practical predictability limits on severe convective hazards owing to model 

resolution error. To fully resolve deep moist convection, Δx of ~100 m or less (Bryan et al. 2003) 

is needed. 

Decreasing ∆x to below ~3 km in CAMs has been explored by many studies (e.g., Kain et 

al. 2008; Schwartz et al. 2009, 2014; Johnson et al. 2013; Loken et al. 2017; Xue et al. 2013). 

Recently, Schwartz et al. (2017) found that 1-km ensemble probabilistic forecasts were especially 

better over the first 12 hours and at heavier rainfall rates (i.e., ≥ 5 mm h-1) for the central and 

eastern portions of the CONUS when compared to the 3-km ensemble forecasts. They attributed 

this improvement to more accurate placement of mesoscale convective systems in the higher-

resolution simulations. The benefit of decreasing ∆x to improve the storm motion forecast was 

also demonstrated by VandenBerg et al. (2014), which compares the storm motion from 1-km and 

4-km ∆x forecasts. However, Schumacher (2015) found that the higher resolution simulation fails 

to initiate a supercell and alters the evolution of the subsequent convection. Schwartz and Sobash 
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(2019) found that 1-km model climatologies of precipitation aligned better with observations than 

3-km climatologies using forecasts from deterministic convection-allowing NWP models. They 

pointed out that the 1-km forecasts were more skillful than the 3-km forecasts during winter and 

spring while having similar skill during summer. Sobash et al. (2019) demonstrated that the next-

day tornado surrogate severe probability forecasts produced from the 1-km ∆x CAM forecasts 

were more skillful than the 3-km forecasts when verified against tornado reports and warnings, 

indicating that the development of near-surface rotation could be better captured as ∆x decreases. 

The results from many of the previous studies are encouraging, indicating promising benefits of 

higher-resolution forecast systems. 

There have been several recent studies examining the potential benefits of finer-grid 

spacing (∆x≈1 km) forecasts in the WoF paradigm. In an idealized framework, Potvin and Flora 

(2015) examined the sensitivity of supercell simulations to ∆x, suggesting that decreasing ∆x from 

3 km to 1 km produces useful rapid changes in low-level rotation intensity. In real data cases, Britt 

et al. (2020) found that the WoFS forecasts with a 1-km Δx may better predict the presence and 

cycling frequency of cyclic supercells, which is potentially useful guidance for tornadogenesis. 

This result is generally consistent with the findings of Adlerman and Droegemeier (2002) that 

distinct mesocyclone cycles were reproduced by decreasing model Δx from 2 km to 0.5 km. 

Lawson et al. (2021) found that the downscaled 1-km forecasts from the WoFS-3km are less 

skillful in predicting weak-moderate reflectivity but could better detect high reflectivity and rapid 

low- and midlevel rotations than the WoFS-3km forecast, even though the improvements were 

case-sensitive. Miller et al. (2021) found that downscaling the WoFS-3km forecasts to 1.5 km does 

not improve reflectivity object occurrence but performs better in detecting midlevel mesocyclones 

through both deterministic and probabilistic verification approaches. 

Nevertheless, the higher-resolution forecasts in these studies are all initialized from the 

downscaled coarser-resolution initial conditions (ICs), in which the resolution error and the 

unresolved finer-scale characteristics could limit forecast accuracy. Potvin et al. (2017) examined 

the impact of initial condition (IC) resolution error on forecasts of convection by conducting 

sensitivity experiments using identical model settings but coarsened ICs. They found that the 

qualitative storm evolution is insensitive to the IC resolution. However, Wang and Wang (2020) 

compared two 500-m forecasts initialized from a 500-m analysis IC and a downscaled 2-km IC 
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and found that using higher-resolution ICs could generate more realistic storm morphology and 

more accurate track of modeled tornado-like vortices. 

While the goal of the WoFS is to provide guidance of various weather hazards with longer 

forecast lead times and improved spatiotemporal accuracy, this study introduces an experimental 

1-km WoF DA and prediction system, in which the 1-km analyses are generated independently by 

assimilating various observations, rather than downscaling ICs from the parent 3-km analyses 

(e.g., Britt et al. 2020; Lawson et al. 2021; Miller et al. 2021). Herein, the performance of the 1-

km WoFS system is evaluated for several severe weather events, including two landfalling TCs, a 

summertime flood-inducing storm and a springtime severe thunderstorm. The goal is to develop 

an experimental 1-km WoFS and explore the hypothesis that generating higher-resolution ICs 

better represents extreme precipitation and tornadogenesis potential across different weather 

systems. This study is organized as follows: Section 2 introduces the DA and prediction system 

along with the 1-km forecast experiments. The evaluation and verification methods are introduced 

in Section 3. Section 4 presents results for 1-km DA sensitivity experiments followed by 

verification and performance comparison results of the two sets of 1-km forecasts. Summary and 

conclusions are given in Section 5. 

2. Experimental design 

a. Description of the DA and prediction system 

The DA and prediction system in this study is configured with two nested domains at 3-

and 1-km Δx, respectively. The 3-km parent domain is identical to the current baseline WoFS 

domain, which contains 300 × 300 grid points and 51 vertical levels. The inner 1-km domain 

contains 402 × 402 grid points and the same vertical levels as the parent domain. The location of 

the 3-km and 1-km domains are case dependent and are placed over the most likely regions for 

severe weather hazards. The configuration of the system is very similar to the baseline WoFS that 

was run in a real-time setting during the 2021 NOAA Hazardous Weather Testbed (HWT) Spring 

Forecast Experiment (SFE, Kain et al. 2003; Gallo et al. 2017; Clark et al. 2020). The system is 

comprised of 36 ensemble members for both domains (Fig. 1), and uses the Advanced Research 

version of the Weather Research and Forecasting (WRF-ARW) model, version 3.9.1 (Skamarock 

et al. 2008). The experimental High-Resolution Rapid Refresh Ensemble (HRRRE; Dowell et al. 

2016) provides the lateral boundary conditions for the 3-km ensemble and the ICs for both the 3-
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and 1-km ensembles. A multi-physics ensemble configuration with different sets of planetary 

boundary layer and radiation schemes (e.g., Stensrud et al. 2000; Wheatley et al. 2014) are applied 

to both 1-km and 3-km ensembles for DA and prediction (Table 1). The ensembles use the NSSL 

two-moment microphysical parameterization scheme (Mansell et al. 2010) and the Noah-MP (Niu 

et al. 2011; Yang et al. 2011) land surface scheme. For forecasts, the 1-km domain is nested in the 

3-km domain with one-way feedback; the 3-km ensemble provides boundary conditions to the 1-

km ensemble and the ICs are provided by the corresponding analysis system. The time steps are 

15 s and 5 s for the 3-km and 1-km runs respectively. For brevity, the 3-km and 1-km ensemble 

DA and prediction systems are referred to as WoFS-3km and WoFS-1km respectively. 

Table 1 Configurations of physics options for the multiphysics WRF ensemble system. 

Multiphysics ensemble 

Ensemble HRRRE Land Microphysics Planetary Shortwave Longwave 

member member surface boundary radiation radiation 

model layer 

1 1 Noah-MP NSSL 2-moment YSU Dudhia RRTM 

2 2 YSU RRTMG RRTMG 

3 3 MYJ Dudhia RRTM 

4 4 MYJ RRTMG RRTMG 

5 5 MYNN Dudhia RRTM 

6 6 MYNN RRTMG RRTMG 

7 7 Noah-MP NSSL 2-moment YSU Dudhia RRTM 

8 8 YSU RRTMG RRTMG 

9 9 MYJ Dudhia RRTM 

10 10 MYJ RRTMG RRTMG 

11 11 MYNN Dudhia RRTM 

12 12 MYNN RRTMG RRTMG 

13 13 Noah-MP NSSL 2-moment YSU Dudhia RRTM 

14 14 YSU RRTMG RRTMG 

15 15 MYJ Dudhia RRTM 

16 16 MYJ RRTMG RRTMG 

17 17 MYNN Dudhia RRTM 

18 18 MYNN RRTMG RRTMG 

19 18 Noah-MP NSSL 2-moment YSU Dudhia RRTM 

20 17 YSU RRTMG RRTMG 

21 16 MYJ Dudhia RRTM 

22 15 MYJ RRTMG RRTMG 

23 14 MYNN Dudhia RRTM 

24 13 MYNN RRTMG RRTMG 

25 12 Noah-MP NSSL 2-moment YSU Dudhia RRTM 
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26 11 YSU RRTMG RRTMG 

27 10 MYJ Dudhia RRTM 

28 9 MYJ RRTMG RRTMG 

29 8 MYNN Dudhia RRTM 

30 7 MYNN RRTMG RRTMG 

31 6 Noah-MP NSSL 2-moment YSU Dudhia RRTM 

32 5 YSU RRTMG RRTMG 

33 4 MYJ Dudhia RRTM 

34 3 MYJ RRTMG RRTMG 

35 2 MYNN Dudhia RRTM 

36 1 MYNN RRTMG RRTMG 

The cycled DA experiments for the WoFS-1km and WoFS-3km are conducted in parallel. 

Available storm observations are continuously assimilated into both the 3-km and 1-km ensembles 

at 15-min intervals using the Community Gridpoint Statistical Interpolation (GSI; e.g., Kleist et 

al. 2009, Shao et al. 2016) based ensemble Kalman filter (EnKF, Houtekamer et al. 2005) DA 

system (GSI-EnKF; Fig. 1). The same sets of conventional, GOES-16 satellite-derived cloud water 

path (CWP) and GOES-16 clear sky radiance are used for both WoFS-1km and WoFS-3km. For 

these non-radar observations in this work, the covariance localization sets for WoFS-3km (see 

Table 2 in Kerr et al. 2022, manuscript submitted to Weather and Forecasting) are applied to 

WoFS-1km. However, radar observations are processed separately for the two domains. 

Specifically, radar reflectivity and radial velocity observations, which are derived from the Multi-

Radar Multi-Sensor (MRMS) product (Smith et al. 2016), are objectively analyzed to a 5-km grid 

for the WoFS-3km and to a 3-km grid for the WoFS-1km. In areas where the composite reflectivity 

is less than 15 dBZ, radar reflectivity is set to 0 dBZ (i.e., clear-air reflectivity) and radial velocity 

is set to missing where the composite reflectivity is less than 20 dBZ. To suppress spurious 

convection, clear-air reflectivity is thinned to a 15-km grid and a 6-km grid and assimilated into 

the WoFS-3km and WoFS-1km, respectively. To maintain ensemble spread, the spatially and 

temporally varying multiplicative adaptive inflation technique is applied (Anderson 2009; Hu et 

al. 2019) in both systems. In this study, the radar DA configurations generally follow those used 

in the current baseline WoFS, yet, some parameters are tested and tuned for the WoFS-1km (see 

Section 4a). 
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Fig.1 Flowchart of the 1- and 3-km ensemble DA and prediction system. 
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b. 1-km forecast experiments 

As mentioned earlier, the goal of this study is to develop the 1-km WoFS and explore the 

potential benefit of the 1-km WoFS in providing probabilistic guidance to thunderstorm hazards. 

To evaluate the performance of the 1-km WoFS, four hazardous weather events are run 

retrospectively in this study (Table 2). The cases include two landfalling tropical cyclones (TCs), 

Harvey in 2017 and Michael in 2018, one summertime flash flood event in 2019, and one 

springtime mesoscale convective system (MCS) in 2020. The simulation domains and the locations 

of radar sites for the four cases are shown in Fig. 2. To evaluate the potential benefit from higher-

resolution DA and to exclude any potential impact caused by different Δx, two 1-km forecast 

experiments within the nested domain are conducted. In one experiment, 3-h ensemble forecasts 

are initialized from the WoFS-1km cycled analyses, and in another experiment, 3-h ensemble 

forecasts are initialized at 1-km Δx by downscaling the WoFS-3km analyses. Hereafter, these 

experiments are referred to as WoFS-1km and Downscaled-1km, respectively. As listed in Table 

2, the DA cycling for the four cases begins at different times, but all ends at 0000 UTC. Also, 

owing to the decreasing forecast skill after 3-h of integration and the considerable computational 

expense, 3-h ensemble forecasts, instead of 6-h forecasts as in the real-time experiments, are 

launched every hour from the first 18 members at the initialization times listed in Table 2. 
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Table 2 The experimental time line for the selected four cases 

Case 

name 
Date DA cycling duration Initialization times (UTC) 

Harvey 25 Aug 2017 
1800 UTC 25 Aug to 0000 

UTC 26 Aug 
2000, 2100, 2200, 2300, 0000 

Michael 10 Oct 2018 
1600 UTC 10 Oct to 0000 UTC 1800, 1900, 2000, 2100, 2200, 

11 Oct 2300, 0000 

Summerti 
18 Jun 2019 

1500 UTC 18 Jun to 0000 UTC 1800, 1900, 2000, 2100, 2200, 

me 19 Jun 2300, 0000 

Springti 

me 
5 May 2020 

1500 UTC 5 May to 0000 UTC 

6 May 

1800, 1900, 2000, 2100, 2200, 

2300, 0000 

Fig. 2 The 3-km (black) and 1-km (red) domains and the locations of radar sites for the four cases. 
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3. Evaluation and verification methods 

To evaluate the EnKF performance of the 1-km system, observation-space diagnostics, 

including mean innovation, the root-mean-square innovation (RMSI), total ensemble spread, and 

consistency ratio (CR) are calculated using the equations described in previous studies (e.g., 

Dowell et al. 2004; Dowell and Wicker 2009; Dowell et al. 2011; Yussouf et al. 2013; Wheatley 

et al. 2015; Jones et al. 2018). The mean innovation and RMSI are the corresponding statistics 

between the observations and the model variables. Mean innovation is defined as the observation 

minus the ensemble mean prior (forecast) or posterior (analysis). It measures the model bias, with 

a positive value indicating an underpredicting model forecast and a negative value indicating an 

overpredicting forecast. The RMSI measures how the model fits the observations, so a smaller 

RMSI is desirable. The total spread is the square root of the summation of the observation error 

variance and the ensemble variance, which measures the degree of the ensemble spread. The total 

spread (Dowell and Wicker 2009) is defined as 

2 𝑁 ̅̅ ̅̅ ̅̅ ̅]Total spread = √𝜎𝑜𝑏𝑠 + 〈 
1 

∑ [𝐻(𝐱𝒏) − 𝐻(𝐱) 
2

〉, (1)𝑛=1 𝑁−1 

where obs is the assumed observation error standard deviation, H is the forward operator that maps 

the model state vector to the observation space, x is the model state vector, and N is the ensemble 

size. The ratio of the square of total spread to the variance of prior innovation (square of RMSI) is 

defined as consistency ratio (CR). A comparable magnitude of prior total spread and RMSI, or a 

CR value of ~1.0 is desirable, indicating that the ensemble variance is an optimal approximation 

for the forecast error variance with the assumed observation error (Dowell et al. 2004). 

The observed MRMS composite reflectivity, MRMS quantitative precipitation estimation 

(QPE) products (Zhang et al. 2016), and MRMS 0–2 km and 2–5 km rotation fields derived from 

MRMS azimuthal wind shear data are used in this study to assess the ensemble forecasts accuracy 

of reflectivity, precipitation, and low- and mid-level rotation, respectively. Only the nested 

domains (red boxes in Fig. 2) are used in the calculations. To assess the potential benefits of the 

finer-resolution system in predicting reflectivity and precipitation, ensemble fractions skill scores 

(eFSS; Duc et al. 2013) are computed for certain thresholds using different neighborhood radii. 

The eFSS extends the concept of spatial neighborhood in the traditional FSS (Roberts and Lean 

2008) to the ensemble dimension (Duc et al. 2013). The application of the neighborhood approach 

can decrease the negative impact of small displacement errors (Schwartz et al. 2017).  That is, the 
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eFSS computes the fractions of the event of interest within a certain spatial neighborhood of each 

grid point and averages the fractions over all the ensemble members. The data within each 

neighborhood but outside the domain are treated as correct negative forecasts (Nachamkin and 

Schmidt, 2015). The statistical significance of the eFSS difference between two experiments are 

assessed using a bootstrap resampling technique (e.g., Hamill 1999; Wolff et al. 2014), in which 

paired resamples of the forecasts from two experiments were randomly drawn and the aggregate 

differences were calculated. The procedure was repeated 1000 times. The differences at a 95% 

(5%) or higher (lower) level were determined to be statistically significant. In this work, we 

ignored the autocorrelation among forecasts. 

The performance of WoFS-1km and Downscaled-1km experiments in forecasting potential 

tornado occurrence is also evaluated. Since 1-km Δx cannot resolve tornadoes, the 0–2-km and 2– 

5-km updraft helicity (UH) are diagnosed from the model variables and are used as proxies for 

tornado-producing mesocyclones in severe storms (Kain et al. 2008; Skinner et al. 2018). For the 

landfalling TC cases, tornado-producing mesocyclones in TCs are characterized by strong low-

level rotation but little buoyancy, so the vertically-averaged vertical vorticity in the 0-2-km layer 

(VOR; Jones et al. 2019; Yussouf et al. 2019) is used as the proxy for rotation instead of UH. For 

the TC cases in this work, the results of using 0–2-km UH and 0–2-km VOR are consistent. 

Correspondingly, the MRMS 0–2-km and 2–5-km rotation fields are employed to verify both UH 

and VOR. Before verifying, the MRMS rotation data are interpolated to the 1-km grid using a 

Cressman interpolation scheme with a 3-km radius of influence. 

An object-based verification framework (Skinner et al. 2018) is used to verify the forecasts 

of mesocyclones for only the Harvey and Springtime cases. While the Michael case had six 

reported tornadoes during our time of interest, only one tornado occurred within the 1-km domain. 

For the Summertime case, no tornado occurred during this event and the forecast rotation was 

weak. Thus, no rotation results are included for these two cases. Like previous studies (Skinner et 

al. 2018; Lawson et al. 2021), this study uses percentiles to determine the thresholds identifying 

the strongest rotational areas as objects. Considering the magnitudes of the diagnostic variables 

vary significantly among different storm types, a fixed percentile value for all cases was not 

selected for this work. Instead, two percentile thresholds are used for each of the forecast and 

observed variables, which include 0–2 km averaged vertical vorticity, 0–2-km UH, and 2–5-km 

UH for the forecasts and 0–2-km and 2–5-km MRMS rotation fields for the observations (Table 
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3). Also, different thresholds (but same percentile) are applied to WoFS-1km and Downscaled-

1km, respectively. Sensitivity tests show that the results are consistent when either the 

Downscaled-1km thresholds or the WoFS-1km thresholds are applied to both runs or to each run 

respectively. The percentile thresholds are determined using all of the forecasts from all of the 

members for each case. The 99th and 99.5th percentiles are used for the Harvey case, while 99.9th 

and 99.95th percentiles are used for the Springtime case. Lower percentiles (99th, and 99.5th) are 

used for the landfalling TC case because the strongest rotations are located near the eyewall, and 

a threshold that is too high could miss the rotations in the rainband where tornadoes did occur. The 

goal is to evaluate the performance of forecasts in predicting strong rotation, rather than to 

determine uniform thresholds for these variables with such a small sample of cases. Before 

identifying objects, the MRMS rotation, UH and VOR fields are aggregated to create 30-min 

rotation tracks. The objects with areas greater than 90 km2 and that last for at least 15 minutes are 

retained. Also, adjacent objects with an edge distance of less than 10 km are merged. To match the 

forecast and the verification objects, a total interest score (TI, Davis et al. 2006a, b; Skinner et al. 

2018) is computed: 

cdmax−cd mdmax−md 
[ ]+[ ] 𝑡max−𝑡 cdmax mdmax TI = { } [ ], (2)

2 𝑡max 

in which cd is the centroid distance between the object pair, md is the minimum distance between 

them, and t is the time difference between them. The maximum allowable threshold for matching 

is set to 40 km for the centroid (cdmax) and minimum spatial displacement (mdmax), and 25 minutes 

for the time displacement (tmax). Matched pairs must have a total interest score greater than 0.2. 

The matched object pairs are classified as “hits”, the unmatched forecast objects as “false alarms”, 

and unmatched verification objects as “misses”; all of which can be used to create the elements of 

2 × 2 contingency table. By aggregating hits (a), false alarms (b) and misses (c) from all the 

members and forecast times, the contingency metrics, probability of detection [POD = a/(a+c)], 

false alarm ratio [FAR=b/(a+b)], frequency bias [bias=(a+b)/(a+c)], and critical success index 

[CSI=a/(a+b+c)] are computed and are then depicted in a performance diagram (Roebber 2009). 
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Table 3 Percentile values of the low- and mid-level rotations from the 1-km forecasts, and MRMS observations 

Case Percentile Variable 
Downscaled WoFS-

Variable 
MRMS 

-1km 1km 1 km 

Harvey 99 0–2 km VOR 3.04 3.5 0–2 km rotation 3.0 
-1) -1)99.5 (10-3 s 4.2 4.7 (10-3 s 4.1 

Springtime 99.9 0–2 km UH 19.56 17.7 0–2 km rotation 2.7 
-2) -1)Low-level 99.95 (m2 s 28.28 25.6 (10-3 s 3.3 

Springtime 99.9 2–5 km UH 81.80 74.6 2–5 km rotation 3.3 

Midlevel 99.95 (m2 s-2) 131.62 118.1 (10-3 s-1) 3.9 

4. Results and discussion 

a. 1-km DA sensitivity experiments 

Sensitivity experiments with different combinations of radar observation errors, horizontal 

covariance localization radii and clear-air reflectivity levels are conducted for the WoFS-1km DA 

(Table 4). The horizontal covariance localization radius represents the influence radius of each 

observation, and the localization function is based on the fifth-order correlation function from 

Gaspari and Cohn (1999). In WoFS, random additive noise is introduced to the u, v, θ, and Td 

-1 -1 variables with the respective standard deviation of 0.5 m s , 0.5 m s , 0.5 K and 0.5 K for all the 

posterior ensemble members where observed reflectivity exceeds 35 dBZ and the difference 

between the observed and the priors exceed 10 dBZ (Dowell and Wicker 2009; Sobash and Wicker 

2015). The horizontal and vertical length scales of the smoothed perturbations are 9 and 3 km, 

respectively. Sensitivity experiments show that introducing more additive noise during 1-km DA 

cycles creates too much spurious convection (not shown), and therefore, the additive noise is 

turned off during 1-km DA. As listed in Table 4, different observation errors are tested in 

experiments Z7V3_H12 (7 dBZ for reflectivity, 3 m s-1 for radial velocity) and Z5V2_H12 (5 dBZ 

and 2 m s-1 , respectively), both with a horizontal localization (HL) radius of 12 km. Experiment 

Z5V2_H6, which is identical to the experiment Z5V2_H12 except with a smaller HL radius of 6 

km, is conducted to test the HL radius for the 1-km DA. To suppress the significant spurious 

convection associated with the 1-km forecast (not shown), an additional experiment with 8 levels 

of clear-air reflectivity (Z5V2H12_8ZR), instead of 4 levels as in the baseline WoFS, is conducted. 

Figure 3 shows the 1-km DA observation-space diagnostic statistics of radar reflectivity 

exceeding 15 dBZ and radial velocity for the Summertime case (18 June 2019) during the first 5-

13 
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h DA-cycling window. The increase of RMSI and bias of reflectivity (Figs. 3a,b) between 1615 

UTC to 1715 UTC 18 June 2019 is attributed to the rapid development of storms and a low 

ensemble-mean reflectivity on average. The comparison between experiments Z7V3_H12 (black 

curves) and Z5V2_H12 (green curves) shows that using smaller observation errors generates 

forecasts and analyses with both lower bias and RMSI (Figs. 3a,b). Correspondingly, the total 

ensemble spread is smaller in Z5V2_H12, partly owing to the lower observation errors. Overall, 

the prior RMSI and total spread in Z5V2_H12 are comparable in magnitude (Figs. 3b,c,f,g), and 

the corresponding value of CR approaches 1.0 in the later period of DA time window (Figs. 3d,h), 

indicating that the ensemble variance is a good approximation of the forecast error variance for the 

assumed observation errors of reflectivity and radial velocity. The results of experiments 

Z5V2_H12 (green curves) and Z5V2_H6 (blue curves) show that a 12-km HL radius yields lower 

bias and RMSI than a 6-km HL radius. Note that the plots of experiments Z5V2H12_8ZR (red 

curves) and Z5V2_H12 nearly overlap (Fig. 3), which is likely due to only computing observation-

space diagnostics within the areas of observed reflectivity exceeding 15 dBZ. The clear-air 

reflectivity observations would have a much larger impact on areas of spurious model storms. 

The 3-hr forecast skill of these sensitivity experiments are further evaluated by computing 

the eFSS of composite reflectivity (Fig. 4). The results show that the experiment Z5V2H12_8ZR 

performs slightly better than others, though Z7V3_H12 has higher eFSS for composite reflectivity 

exceeding 25 dBZ in the first 45 mins (Fig. 4a). Both the observation-space diagnostics during DA 

cycles and the eFSS score during the 3-h forecast indicate that experiment Z5V2H12_8ZR yields 

the best performance. Sensitivity tests for the other three cases yield similar results (not shown). 

Thus, the DA configuration of the Z5V2H12_8ZR experiment is used in the WoFS-1km 

experiment. The different radar DA parameters used in the WoFS-3km and WoFS-1km are 

summarized in Table 5. 

Table 4 1-km radar DA experiments 

Horizontal 

DA experiments 

Reflectivity and 

radial velocity 
covariance 

localization radius 
Clear-air reflectivity 

vertical levels 
observation error 

Z7V3_H12 -17 dBZ; 3 m s 12 km 1, 3, 5 ,7 km MSL 

Z5V2_H12 -15 dBZ; 2 m s 12 km 1, 3, 5 ,7 km MSL 

Z5V2_H6 -15 dBZ; 2 m s 6 km 1, 3, 5 ,7 km MSL 
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Z5V2H12_8ZR 5 dBZ; 2 m s-1 12 km 1, 2, 3, 4, 5, 6, 7, 8 km MSL 

Fig. 3 Observation-space diagnostics, including mean innovation, root-mean-square innovation, total ensemble 

spread, consistency ratio for background and analysis reflectivity >15 dBZ (a−d) and radial velocity (e−h) for 1-

km data DA experiments from 1500 UTC to 2000 UTC 18 June 2019. 
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Fig. 4 Ensemble fractions skill score (eFSS) of composite reflectivity > 25 dBZ and >40 dBZ of the 3-h forecasts 

initialized at 1900 UTC 18 June 2019 using a neighborhood radius of 12 km for 1-km DA experiments. 

Table 5 Radar DA parameters for the WoFS-3km and WoFS-1km 

Domain (grid 

spacing) 

Reflectivity 

resolution/err 

or 

Clear-air reflectivity 

resolution/error/levels 

Radial 

velocity 

resolution/er 

ror 

Horizontal 

localization 

radius 

Reflectivity-

based additive 

noise 

D01 (3 km) 5 km; 7 dBZ 15 km; 5 dBZ; 4 levels 5 km; 3 m s -1 18 km Yes 

D02 (1 km) 3 km; 5 dBZ 6 km; 5 dBZ; 8 levels 3 km; 2 m s -1 12 km No 

b. 1-km DA observation-space diagnostics 

The reflectivity and radial velocity observation-space diagnostics from the WoFS-1km for 

all four cases are shown in Figure 5. In general, the large mean innovation and RMSI for both 

reflectivity and radial velocity sharply decrease after the first couple of DA cycles, indicating that 

assimilating dense radar data and other observations can quickly reduce the model error. 

Convection initiation at ~1645 UTC 18 June 2019 and ~1745 UTC 5 May 2020, are underpredicted 

by the model, causing the increase of the positive mean innovation and RMSI of radar reflectivity 

at those times (Figs. 5e,g). The RMSI of radial velocity also increases when storms develop and 

then becomes quite stable (Figs. 5f,h). The total spread curves in Fig. 5 are quite close to the 

observation error line (e.g., Figs. 5a,b,c,d,f,h), indicating small model ensemble spread. The prior 

RMSI and total spread are comparable in magnitude for each of the four cases, and the 

corresponding CRs approach 1.0 in the later period of DA time windows, which are desirable. The 

overall diagnostic statistics suggests that the 1-km ensemble DA system has reasonable and stable 

performance for all four cases. 
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Fig. 5 Mean innovation (<O-F>), root-mean-square innovation (RMSI), observation error (ob error), total 

spread, consistency ratio (CR) of reflectivity > 15 dBZ (a,c,e,g) and radial velocity (b,d,f,h), and number of 

assimilated observations (right axis) from the 1-km DA of four cases. Two thin dashed lines denote 0 and 1 
values on the left axis. The sawtooth patterns of <O-F>, RMSI and total spread are due to the plotted prior and 

posterior statistics. 

c. Composite reflectivity forecasts 

The performance of WoFS-1km and Downscaled-1km experiments are first subjectively 

evaluated using observations. Figure 6 and Figure 7 show the MRMS composite reflectivity and 

the probability matched mean (PMM) composite reflectivity from the ensemble analyses and 1-h 

forecasts, respectively, at their representative times for each case. The probability matching 
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assumes that the most likely spatial representation is given by the ensemble mean and restores the 

amplitude characteristics of the full ensemble to the ensemble mean (Ebert 2001). 

Hurricane Harvey reached category 4 status on the Saffir-Simpson scale by 0000 UTC 26 

August while it approached the middle Texas coast. It made landfall near Rockport, TX at 0300 

UTC 26 August and stalled near the coast for four days. For this case, both experiments accurately 

depict the hurricane eyewall and rainbands (Figs. 6a,e,i). In the 1-h forecasts, both WoFS-1km and 

Downscaled-1km overpredict the reflectivity of the convection near the eyewall and in the 

northeast rainband, but underpredicts the western rainband (Figs. 7a,e,i). Both experiments 

produce the rainband intersecting the Texas coast to the northeast of the hurricane and the 

supercells embedded in the northern rainband, but the rainband in WoFS-1km extends further 

eastward into the Gulf of Mexico like in the observations (Fig. 7i). 

Hurricane Michael (10 October 2018) moved northward and turned northeastward while 

approaching the northern Gulf Coast, making landfall near Tyndall Air Force Base in Florida near 

1730 UTC on 10 October. By that time, Michael reached category 5 hurricane status with 

maximum sustained winds estimated up to ~140 kt. Michael also caused several tornadoes in 

Florida, Georgia, South Carolina and Virginia during the next several days as it moved farther 

inland. For Hurricane Michael, the eyewall is well depicted in both experiments (Figs. 6b,f,j). The 

WoFS-1km experiment even reproduces the narrow outer eyewall on the southwest side with 

adequate representative coverage of strong reflectivity, indicating the advantage of denser radar 

DA into the finer-resolution system. However, both experiments slightly overpredict the spatial 

extent of the higher reflectivities especially as forecasts advance in time and the WoFS-1km has 

the eye located slightly to the east of the observed eye (Figs. 7b,j). 

From 18 to 20 June 2019, storms across the eastern United States caused notable rainfall 

amounts up to seven inches, leading to instances of flash flooding in parts of New Jersey, 

Pennsylvania, New York, Virginia and areas near Washington D. C.. For the Summertime case, 

the WoFS-1km analysis is somewhat better than Downscaled-1km due to the former producing 

less spurious convection in central Virginia (Figs. 6c,g,k). This result is likely because denser 

clear-air reflectivity is assimilated into the WoFS-1km. Even though both experiments have small 

areas of spurious convection near the southern edge of the domain and in central Virginia along 

with the convection displacement errors, Downscaled-1km has larger and more numerous areas of 

intense convection (Figs. 7c,g,k). 
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Through the afternoon hours of 5 May 2020, a supercell moved east-southeastward along 

the border between South Carolina and North Carolina. The supercell thunderstorm produced four 

tornadoes, including one EF-2 tornado in Great Falls, South Carolina, and multiple large hail and 

strong wind events. For this Springtime case, both 1-km experiments generate accurate 2200-UTC 

analyses (Figs. 6d,h,l). They are also able to predict the intensity and the location of the main line 

of convection reasonably well, but overpredict the convection in the west portion of the domain 

behind the line (Figs. 7d,h,l). 

Fig. 6 Observed MRMS composite reflectivity (units: dBZ; a–d,) and simulated probability matched mean 
composite reflectivity from 3-km (e–h) and 1-km (i–l) analyses at 2000 UTC 25 Aug 2017, 2000 UTC 10 Oct 

2018, 2000 UTC 18 Jun 2019, and 0000 UTC 6 May 2020. Black contours represent the 35 dBZ value from 

MRMS. 
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Fig.7 Similar to Fig. 6, except from the 1-h forecasts initialized at 2000 UTC 25 Aug 2017, 2000 UTC 10 Oct 

2018, 2000 UTC 18 Jun 2019, and 0000 UTC 6 May 2020. 

Objective evaluation of composite reflectivity is conducted by computing eFSS for the four 

cases (Fig. 8). To eliminate the possible impact of model bias, the eFSS of composite reflectivity 

exceeding the 75th, 95th, and 99th percentile thresholds are computed using forecast history files 

every 5 min from all the initializations and all ensemble members (Table 6). The time series of 

eFSS shows that WoFS-1km generally outperforms Downscaled-1km at forecasting higher 

reflectivities (99th percentiles) in the two TC events, while it is less skillful for weaker reflectivities 

(75th percentile). The impact of 1-km DA is quite neutral for the 95th percentile reflectivity in the 

Michael case. For the Summertime event, WoFS-1km shows marginal improvement, with the most 

sustained improvement through the 3-hr forecast for the 99th percentile. For the Springtime case, 

even though WoFS-1km generates higher eFSS at the analysis time, its forecast is worse for all 

thresholds (Figs. 8h,l), probably due to less intense convective cores and larger storm displacement 
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errors within the leading line of convection (Figs. 7h,l). The results indicate that WoFS-1km’s 

performance varies over different cases, and is likely more beneficial for high reflectivity forecasts. 

Table 6 Percentile thresholds of composite reflectivity and hourly accumulated precipitation for forecast 

experiments and MRMS observations 

Experiment Composite reflectivity 

(dBZ) 

Hourly accumulated precipitation 

(mm h -1) 

75th 95th 99th 75th 90th 95th 99th 99.5th 

WoFS-1km 26.3 41.7 49 1.8 7.1 11.2 22.6 28.2 

Downscaled-1km 26.9 41.7 49 2.03 7.2 11.2 21.9 27.2 

MRMS 25.3 36.7 42 2.3 6.9 11.3 23 29 
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Fig. 8 Ensemble fractions skill score (eFSS) of forecasted composite reflectivity exceeding different percentile 

thresholds from WoFS-1km and Downscaled-1km using a neighborhood radius of 12 km. The eFSS are 
aggregated over all the initialization times. The black dots from the top indicate the eFSS differences between 

the two experiments are statistically significant. 

d. Precipitation forecasts 

To evaluate the performance of the two 1-km forecast experiments in predicting heavy 

precipitation, the forecasts of PMM 3-h accumulated precipitation are compared against the 

MRMS QPE. Hurricane Harvey stalled with its center near the Texas coast for four days after 

landfalling, dropping historic rainfall amounts of more than 60 inches over parts of southern Texas 

and causing catastrophic flooding. For this case, the extremely heavy precipitation from the 

forecast initialized at 0000 UTC 26 August is better depicted by the WoFS-1km than the 

Downscaled-1km when compared to the observations in the same time frame. Specifically, the 

eyewall precipitation center over the Texas coast and the precipitation center in the northeastern 

rainbands are slightly more intense and similar to the observations in the WoFS-1km experiment 
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(Figs. 9a,e,i). However, both WoFS-1km and Downscaled-1km vastly underestimate the 

precipitation in the northeastern rainbands. 

Hurricane Michael caused widespread rainfall accumulations of 3 to 6 inches and localized 

rainfall totals in excess of 10 inches after its landfall, resulting in some freshwater flooding as it 

moved across the southeastern United States. Similar to the Harvey case, WoFS-1km predicts a 

more intense eyewall precipitation center than the Downscaled-1km, with the intensity more 

consistent with the observations (Figs. 9b,f,j). However, both experiments fail to represent the 

intense precipitation structure around the northwestern/western portions of the eyewall and the 

narrower precipitation bands wrapping around the southern extent of the eye. Away from the 

eyewall, both experiments slightly underpredict the northern outer rainband. 

For the Summertime case, the observed precipitation center near the southern edge of 

Virginia caused a couple of flash flooding events at ~2230 UTC on 18 June, 2019 according to the 

NWS Weather Prediction Center flash flood reports with 3-hourly precipitation totals up to 50 

mm. The 3-h forecast PMM precipitation from both experiments shows an overestimation of 

rainfall in the northern part of the domain and an underestimation of rainfall in the southwestern 

portion of the domain compared to the observations (Figs.9 c,g,k). WoFS-1km offers some 

marginal improvement over Downscaled-1km since Downscaled-1km falsely generates more 

areas of spurious precipitation centers, especially in the southeastern portion of the domain. For 

the Springtime case, both experiments underpredict the precipitation amount in the western portion 

of the domain and expand the precipitation too far to the east compared to the observations (Figs. 

9d,h,l). Downscaled-1km overall has a more continuous strong precipitation area like the 

observations than the WoFS-1km. 
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Fig. 9 The 3-h accumulations of MRMS QPE (a–d) and the probability matched mean (PMM) 3-h accumulated 

precipitation (units: mm) from downscaled-1km (e–h) and WoFS-1km (i–l) forecasts initialized at 0000 UTC 26 

Aug 2017, 2000 UTC 10 Oct 2018, 2000 UTC 18 Jun 2019, and 2200 UTC 5 May 2020. Black contours represent 
the observed 25 mm values. 

The two 1-km experiments produce very similar precipitation coverage fractions for 

smaller thresholds of 0.25–10 mm h-1 (Fig. 10). The deviation between the two experiments 

increases with higher thresholds. Specifically, the two experiments forecast the precipitation 

coverage well at lower thresholds for the two landfalling TC cases (Figs. 10a,b). While the 

forecasts from both experiments underpredict at higher thresholds, WoFS-1km creates slightly 

larger areas of heavier precipitation, which is more consistent with the observations in the terms 

of areal coverage, than the Downscaled-1km experiment. Both experiments slightly underpredict 

at lower thresholds for the Spring and Summertime cases, while overpredict at higher thresholds. 

However, the forecast of areal coverage at higher rainfall thresholds of WoFS-1km is closer to the 

observed areal coverage (Figs. 10c,d). The aggregated result shows that while both experiments 
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underestimate precipitation greater than 20 mm h-1 , WoFS-1km performs slightly better than 

Downscaled-1km in representing the coverage of higher rainfall (Fig. 10e). 

Fig. 10 Fractional areal coverage (%) of 1-h accumulated precipitation exceeding different thresholds from (a– 
d) each case and (e) all four cases. Hourly accumulated precipitation is aggregated over all initializations and 

forecast hours. 

To complement the above subjective verification of the precipitation forecasts from both 

1-km experiments, the objective verification metric eFSS is computed to evaluate the spatial 

placement accuracy. The eFSS is computed for the 1-h accumulated precipitation forecast 

aggregated over all of the initialization and forecast times with different percentile thresholds 
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(Table 6) and neighborhood radii for each case. Percentile rather than accumulation thresholds are 

used to reduce the impact of precipitation bias in the calculation of eFSS of the two 1-km 

experiments (as shown in Fig. 10). As shown in Fig. 11, the performance of the two experiments 

is case sensitive. Specifically, for Hurricane Harvey, the WoFS-1km is more skillful than 

Downscaled-1km in predicting heavier rainfall exceeding the 90th, 95th, 99th and 99.5th percentiles, 

but less skillful in predicting moderate rainfall exceeding the 75th percentile (Figs. 11a1−a5). For 

Hurricane Michael, Downscaled-1km outperforms WoFS-1km at the 75th percentile while the 

difference decreases at higher percentile thresholds (Figs. 11b1−b5). For the Summertime case, 

the WoFS-1km shows higher eFSS than Downscaled-1km at moderate precipitation (75th 

percentile) but essentially indistinguishable difference for higher percentiles thresholds (Figs. 

11c1−c5). For the Springtime case, Downscaled-1km performs better than WoFS-1km at all 

percentile values (Figs. 11d1−d5). For all cases, the eFSS difference between the two experiments 

are not statistically significant at the 95% level probably owing to a small sample size. 
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Fig. 11 Ensemble fractions skill score (eFSS) for each neighborhood radius (km) using 1-hourly accumulated 
precipitation greater than different thresholds from WoFS-1km and Downscaled-1km forecasts. The eFSS are 

computed using hourly precipitation from all the members, initializations and forecast hours. The eFSS 

difference between the two experiments are not statistically significant at the 95% level. 

The eFSS differences between the two experiments for the first, second, and third-hour 

precipitation are aggregated together over all four cases and are shown in Fig. 12. WoFS-1km 

outperforms the Downscaled-1km in predicting heavier precipitation exceeding the 99th and 99.5th 
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percentiles and underperforms for moderate precipitation. The difference between the two 

experiments gradually increases with longer forecast lead times, indicating that the impact of 1-

km DA can last for hours. In fact, during the third forecast hour, WoFS-1km significantly 

outperforms Downscaled-1km at the higher percentiles while only having slightly less skillful 

forecasts than Downscaled-1km at the smaller percentiles (Fig. 12c). The significant 

outperformance of WoFS-1km is primarily due to its increasing outperformance in Harvey and 

Michael, and its slightly reducing underperformance in the Springtime case with longer lead time 

at higher percentiles. The increasing difference with forecast lead time between the two 

experiments is likely due to the difference of reflectivity forecast skills in two heavy precipitation-

producing TCs as shown in Figs. 8i,j. It is probably because TC rainband and eyewall structures 

are better represented in WoFS-1km at early forecast times (e.g., Figs. 6,7). In reality, TC 

convection continued to develop during the forecast periods. With better-resolved TC structures, 

convective cells in WoFS-1km forecasts are developed more realistically than those in 

Downscaled-1km and thus, the difference in skill between the two experiments increases as 

forecast lead time increases. 

Overall, WoFS-1km produces heavy precipitation with a smaller bias in area coverage than 

Downscaled-1km. Nevertheless, the benefit of WoFS-1km in reducing precipitation displacement 

also depends on individual cases, lead times, and rainfall intensities. The results of precipitation 

and reflectivity forecasts are generally consistent, except for the Michael case, in which WoFS-

1km’s forecast skill for strong reflectivity is better than Downscaled-1km’s forecast skill (Fig. 8j) 

even though their forecast skills for heavy precipitation are similar (Figs. 11b4,b5). 
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Fig. 12 Ensemble fractions skill score (eFSS) difference (WoFS-1km minus Downscaled-1km) for the first (a), 

second (b), and third (c) forecast hour accumulated precipitation aggregated over all the initializations greater 

than different thresholds for each neighborhood radius (km). The overlaying numbers indicate the eFSS 
differences between the two experiments are statistically significant. 

e. Low- and midlevel rotation forecast 

Between 1900 UTC 25 Aug and 0300 UTC 26 Aug 2017, Hurricane Harvey produced a 

total of twelve tornadoes. To assess the potential of the WoFS-1km in forecasting low-level 

rotation in mini supercells within the hurricane rainbands, the 1-h forecast probability swaths of 

the model-simulated 0–2-km vorticity overlaid by MRMS 0–2-km rotation tracks and tornado 

reports are shown in Fig. 13. To obtain the probability swath, the maximum vorticity within the 

0–1-h period is computed for each member first, and then probabilities of vorticity exceeding 

certain thresholds (i.e., event occurrence) within a 3-km-radius neighborhood of each grid is 

computed. The probability here is the neighborhood maximum ensemble probability (NMEP; 

Schwartz and Sobash 2017). Overall, the WoFS-1km experiment generates higher probability 

swaths along the coast where several tornadoes occurred compared to Downscaled-1km. In the 1-

h forecasts initialized at 2000 UTC and 2300 UTC (Figs. 13), the Downscaled-1km forecasts 

indicate low probability (≤ 40%) of strong low-level rotation occurrence in the northern rainband 

where strong rotation swaths and tornadoes were observed, while the WoFS-1km experiment has 

higher probabilities (> 70%). However, the WoFS-1km experiment still exhibits large 
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displacement errors and noise when compared with the observations. Besides, even WoFS-1km 

fails to develop any meaningful low-level rotation in the vicinity of the northeastern-most tornado 

report and the most elongated and contiguous area of MRMS rotation because most ensemble 

members could not develop strong enough storms there. The notable higher probabilities in WoFS-

1km exist throughout the entire 3-h forecast (not shown), indicating that it is not simply a result of 

faster spin-up when initialized from 1-km analyses (WoFS-1km) than from 3-km analyses 

(Downscaled-1km). 

Fig. 13 Neighborhood maximum ensemble probability of simulated 0–2 km vertically-averaged relative vorticity 

(s-1) exceeding 0.004 s-1 within a 3-km-radius neighborhood. The relative vorticity is aggregated within the 0– 
1-h forecast period beginning at (a,b) 2000 UTC and (c,d) 2300 UTC 25 Aug 2017. The thick black contours are 

the corresponding low-level MRMS rotation of 0.003 s-1 and magenta triangles represent tornado reports during 

the 1-h forecast period.  

There were four tornadoes and several large hail events reported during the entire forecast 

window for the Springtime case. As shown in Figs. 14, WoFS-1km generates higher probability 

swaths of strong low- and midlevel updraft helicity than Downscaled-1km over the observed 
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rotation tracks and tornado reports in the eastern part of the domain, although they both miss most 

of the strong rotational areas to the west. Meanwhile, both experiments produce spurious rotation 

in the eastern part of the domain, especially in the WoFS-1km experiment. The WoFS-1km tends 

to generate higher probabilities farther to the south than the Downscaled-1km. Despite the stronger 

UH in WoFS-1km (Fig. 14), WoFS-1km could not develop a strong enough convective line in the 

later-initialized forecasts, eventually leading to weaker rotations than that in Downscaled-1km (see 

Fig. 16 below). 

Fig. 14 Similar to Fig. 13, except for (a,b) 0–2 and (c,d) 2–5 km updraft helicity (UH, units: m2 s-2) exceeding 

40 m2 s-2 and 130 m2 s-2 respectively and the corresponding low-level and midlevel MRMS rotations of 0.0033 
s-1 and 0.0039 s-1 respectively within the 0–1-h forecast period beginning at 2200 UTC 5 May 2020. The magenta 

triangles and green squares represent tornado and hail reports respectively during the 1-h forecast period. 

The contingency-table elements are calculated using the procedure described in Section 3 

and aggregated over all ensemble members, forecast times, and initializations. The overall object-

based verification contingency metrics are displayed in Fig. 15. For the Harvey case, the two 

experiments are nearly unbiased in predicting low-level rotations for the 99th percentile threshold 

while WoFS-1km outperforms Downscaled-1km with a higher CSI. The higher CSI value of 

WoFS-1km for the 99th percentile threshold is mainly attributed to the lower false alarm ratio, 

which is partly because Downscaled-1km falsely produces too many large vorticity objects over 
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the ocean (not shown). For the 99.5th percentile threshold, although WoFS-1km has a notable 

underprediction bias, the two experiments exhibit similar CSI (Figs. 15a). 

Fig. 15 Performance diagram for (a) 0–2 km VOR objects for Harvey, and (b) 0–2 km and (c) 2–5 km UH objects 
for the Springtime case from WoFS-1km (red marks) and Downscaled-1km (blue marks). The gray dashed lines 

represent bias scores with labels on the outward extension of the line. The solid curves represent CSI. Score 
metrics in the performance diagrams are computed by aggregating the table components over all the members, 

initializations and forecast times. The objects are identified by different percentile values in Table 3. 

For the Springtime case, the overall Downscaled-1km forecasts for low- and mid-level 

rotations are better than those of WoFS-1km (Figs. 15b,c), with higher POD, lower false alarm 

ratio, and higher CSI, except that the two experiments perform similarly for stronger low-level 

rotations at a higher percentile (99.95th) threshold (Fig. 15b). The lower forecast skill of WoFS-

1km is primarily attributed to it having fewer UH objects in total (Fig. 16a–d). For the 99.9th 

percentile threshold, a total of 4383 and 5313 0–2-km UH objects are identified over all the 

initializations, forecast times, and ensemble members in WoFS-1km and Downscaled-1km, 

respectively. Although the storm morphology appears similar in the 3-km and 1-km analyses, small 

differences in the heterogeneous low-level environment eventually led to different storm 

evolutions. Specifically, the analyses of WoFS-1km have stronger cold pools associated with a 

supercell on the eastern portion of the domain than Downscaled-1km (not shown, similar to Fig. 

16e,f). However, ongoing storms on the western portion of the domain are embedded in a warmer 

analyzed environment in WoFS-1km than in Downscaled-1km. As the forecast advances, the 

convective cores in WoFS-1km could not develop as vigorously as in Downscaled-1km, and the 

convective line in WoFS-1km became narrower and discontinuous (see magenta contours in Figs. 
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16 e–h), resulting in fewer strong UH objects (Figs. 16b,d), especially in the last two initializations. 

The reason for the different low-level environments in the analyses from the 1-km and 3-km 

systems is uncertain, but it is likely to be, at least in part, due to different DA strategies of radar 

observations. This result highlights the necessity to further tune the DA strategies in WoFS-1km. 

The case-dependent performance of WoFS-1km and Downscaled-1km warrants further 

exploration. Since the radar coverage is sparser near the coast than farther inland, one possible 

reason is that assimilating denser radar observations is more advantageous for cases located in 

radar-sparse areas (i.e., landfalling hurricanes near the coast) than cases located inland. For 

example, for cases in radar-sparse areas, assimilating higher-resolution radar observations as in 

the WoFS-1km possibly improve the representation of storm structures in the analyses. Since the 

evolution of TCs are mainly dominated by large-scale processes, they are more likely to benefit 

from the better analyzed storm structures. In comparison, convective storms like the Springtime 

case are sensitive to finer-scale, near-storm thermodynamic and dynamic environments, which 

makes the situation more complicated. 

Fig. 16 (a–d) 0–2 km 99.9th percentile UH objects (colored) from each ensemble member and (e–h) the 

perturbation of the ensemble-mean equivalent potential temperature at the lowest 100-hPa (colored, units: °C) 

and 10-m wind vectors (units: m s-1) from the (a,b,e,f) 60-min and (c,d,g,h) 120-min forecasts initialized at 2300 

UTC 5 May 2020. The MRMS low-level rotation objects in (a–d) are black shaded. The magenta contours in (e– 
h) represent the 40-dBZ probability matched mean composite reflectivity. 
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5. Summary and Conclusions 

In this study, an experimental 1-km Warn-on-Forecast DA and forecast system (WoFS-

1km) is developed and tested using four high-impact hazardous weather events with different 

storm types. Two 1-km ensemble forecast experiments are conducted. In one experiment, forecasts 

are initialized from WoFS-1km analyses. In another experiment, forecasts are initialized from the 

downscaled WoFS-3km, referred to as Downscaled-1km. The ensemble forecasts of composite 

reflectivity, precipitation and rotation (i.e., updraft helicity and relative vorticity) from WoFS-1km 

and Downscaled-1km are assessed using observations and are compared to evaluate the impact of 

DA at 1-km Δx. 

The comparison between WoFS-1km and Downscaled-1km suggests that DA at 1-km Δx 

benefits the short-term forecast of two cases – one landfalling TC case and the Summertime 

thunderstorm event. The impact of 1-km DA is neutral on the other TC case, but results in degraded 

forecast skill in the Spring thunderstorm event. Subjective evaluation shows that WoFS-1km 

produces better reflectivity forecasts with more complete structure details in one landfalling TC 

and less spurious convection in the Summertime event compared to that from Downscaled-1km. 

In general, WoFS-1km shows higher forecast skill in predicting high reflectivity in three cases. 

Meanwhile, the WoFS-1km experiment performs better at predicting these selected flash flooding 

events with a smaller bias for heavy rainfall. However, WoFS-1km only marginally improves the 

spatial placement of heavy precipitation and slightly degrades the skill for weak precipitation in 

these flash flooding cases. The impact of 1-km DA on precipitation forecasts becomes more 

apparent with longer forecast lead times. The WoFS-1km improves the forecast skill of strong 

low-level rotation in the Hurricane Harvey case with a lower false alarm ratio. However, the 

forecast skill for the Springtime event is degraded with 1-km DA likely because of fewer strong 

convective cells and fewer rotation objects being generated. 

Overall, results in this paper only suggest conditional benefits from the WoFS-1km. 

However, with just four cases being used to test both systems, the results may be impacted by the 

unique characteristics of each of those cases. A larger sample of cases is needed to further evaluate 

and generalize the overall performance of the finer-resolution WoFS-1km system. Although 

Potvin et al. (2017) found that the 2-h convective forecast is relatively insensitive to the Δx of ICs 
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for a few cases, the mixed impact of using higher-resolution ICs in this study is not fully consistent 

with their findings. Their findings are based on the assumptions that the ICs are perfect and the 

only source of forecast error is the IC resolution error. However, the newly-developed WoFS-1km 

in this study is different from the WoFS-3km not only in Δx, but also in observation and DA 

strategies. These differences between the DA systems ultimately have an impact on the forecasts 

and their errors. Moreover, this experimental WoFS-1km is in its infancy, and research efforts are 

currently underway to tune and test the system using a wide variety of hazardous weather events 

across the continental United States. 
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